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Background of L évy process

• The basic theory was established in the 1930s by Paul Lévy,
but a great deal of new theoretical development as well as
novel applications have appeared in recent years.

• They form special subclasses of both semimartingales and
Markov processes.

• They are the simplest examples of random motions whose
sample paths are right-continuous and have a number (at most
countable) of random jump discontinuities occurring at random
times on each finite time interval.
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Background of L évy process

• Mathematical finance, the fluctuations in the financial
markests, quantum field theory, filtering, economics, control,
physics, mechanics, engineering;

• Earthquakes, hurricanes, epidemics;

• Important examples: Brownian motion and Gaussian
processes, Poisson processes, Compound Poisson processes,
Interlacing processes, α-stable Lévy process, Subordinators.
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The definition of L évy process

Definition 1 (Lévy process)
Let L(t) be a stochastic process defined on a complete
probability space (Ω,F ,P), then L(t) is a Lévy process if the
following conditions hold:
(a) L(0) = 0 (a.s.);
(b) L(t) has independent and stationary increments;
(c) L(t) is stochastically continuous,
i.e. for all k > 0 and t , s ≥ 0,

lim
t→s

P(|L(t) − L(s)| > k) = 0;
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Remark

Remark 1 In the presence of (a) and (b), (c) is equivalent to the
following condition: for all k > 0,

lim
t↓0

P(|L(t)| > k) = 0.

Remark 2 L(t) has càdlàg paths (i.e., the paths are right
continuous with left limits.).
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Some examples of L évy processes

1. Brownian motion: A standard Brownian motion
B = (B(t), t ≥ 0) is a Lévy process on R

d such that
• B(t) ∼ N(0, tI) for each t ≥ 0,
• B has continuous sample paths.
The characteristic function of a standard Brownian motion is
given by

φB(t)(u) = exp
{
−

1
2

t |u|2
}
,

for each u ∈ R
d , t ≥ 0.
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Some examples of L évy processes

2. Poisson process: Let N = (N(t), t ≥ 0) be a Poisson
process with intensity λ > 0. It is a Lévy process with
non-negative integer values. For each t > 0,N(t) follows a
Poisson distribution with parameter λt so that

P(N(t) = n) =
(λt)ne−λt

n!

for each n = 0,1,2, ...
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Remark

A Poisson process has piecewise constant paths on each finite
time interval and at the random times

τn = inf {t ≥ 0 : N(t) = n} ,

and it has jumps of size 1.
Its characteristic function is given by

φN(t)(u) = exp
[
λt(eiu − 1)

]
,

for each u ∈ R
d , t ≥ 0.
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Some examples of L évy processes

3. Compound Poisson process:

Let N = (N(t), t ≥ 0) be a Poisson process with intensity λ > 0
and let (U(m),m ∈ N) be a sequence of independent,
identically distributed random variables on R

d , independent of
N and defined on the probability space (Ω,F ,P) with common
law µU .

The compound Poisson process Z = (Z (t), t ≥ 0) is a Lévy
process, where for each t ≥ 0,

Z (t) =

N(t)∑

k=1

U(k).
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Some examples of L évy processes

The characteristic function of a compound Poisson process is
given by

φZ (t)(u) = exp
{

t
[∫

Rd
(e<iu,y> − 1)λµU(y)

]}
,

for each u ∈ R
d , t ≥ 0 and we can deduce that the Lévy

measure for Z is λµU .
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Lévy-Khintchine formula

If L(t) is a Lévy process, then for all t ≥ 0 and u ∈ R
d ,

E(ei(u,L(t))) = etη(u),

where

η(u) = i(b,u) −
1
2
(u,Au) +

∫

Rd−{0}
[ei(u,y)

−1 − i(u, y)I(0<|y |<1)(y)]ν(dy),

and A is a positive definite symmetric d × d matrix.

The law of L(t) is uniquely determined by its characteristics
(b,A, ν).
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Lévy It ó decomposition Theorem

If L(t) is a Lévy process, then there exist a constant b ∈ R
d , a

Brownian motion BA with covariance matrix A and independent
Poisson random measure N defined on R+ × (Rd − {0}) with
compensator Ñ, such that for every t ≥ 0,

L(t) = bt + BA(t) +

∫

|y |<c
yÑ(t ,dy) +

∫

|y |≥c
yN(t ,dy),

where
• Ñ(t ,dy) = N(t ,dy) − tν(dy),
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• N is independent of B and is a Poisson random measure
defined on R+ × (Rd − {0}) with compensator Ñ and intensity
measure ν.
• ν is a Lévy measure defined on R

d − {0}, which satisfies
∫

Rd−{0}
(y2 ∧ 1)ν(dy) <∞,

• b = E(L(1) −
∫
|y |≥c yN(1,dy)),

• the parameter c ∈ [0,∞) is a constant.

•Usually, the pair (B,N) is called a Lévy noise.
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Lévy martingale

• The process L(t) is a martingale, and will be called a Lévy
martingale, if and only if

∫

(|x|>1)
|x |ν(dx) <∞ and b = −

∫

(|x|>1)
xν(dx).

In this case, the process L(t) can be written as follows:

L(t) = BA(t) +

∫

Rd−{0}
yÑ(t ,dy).

• If L(t) = LM(t) + bt , where LM is a Lévy martingale, we call
L(t) a Lévy martingale with drift.
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Stochastic system of L évy processes:

Consider the following stochastic differential equation driven by
Lévy processes:

dx(t) = f (x(t))dt + g(x(t))dL(t), t ≥ t0 ≥ 0, (1)

with the initial value x(t0) = x0 ∈ R
d , where f and g are two

functions, and L(t) is a Lévy process.
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Stochastic system of L évy processes:

By using the Lévy Itó decomposition Theorem, we establish the
following model:

dx(t) = f (x(t))dt + g(x(t))dB(t) +

∫

|y |<c
h1(x(t−), y)Ñ(dt ,dy)

+

∫

|y |≥c
h2(x(t−), y)N(dt ,dy), t ≥ t0 ≥ 0, (2)

with the initial value x(t0) = x0 ∈ R
d , where the mappings

f : R
d → R

d ,g : R
d → Md ,m(R),hi(i = 1,2) : R

d × R
d → R

d ,
and the constant c ∈ (0,∞] is the maximum allowable jump
size.
Here, Md ,m denotes the space of all real-valued d ×m matrices

with the norm ‖A‖ := (
∑d

i=1
∑m

j=1 |aijaji |)
1
2 , A = (aij)d×m.
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Conditions:

Assumption 1 f ,g,h1,h2 satisfy the global Lipschitz condition,
i.e., there exist four positive constants Ki(i = 1,2,3,4) such that

|f (x1) − f (x2)| ≤ K1|x1 − x2|, |g(x1) − g(x2)| ≤ K2|x1 − x2|,

∫

|y |<c
|h1(x1, y) − h1(x2, y)|ν(dy) ≤ K3|x1 − x2|,

∫

|y |≥c
|h2(x1, y) − h2(x2, y)|ν(dy) ≤ K4|x1 − x2|,

for all x1, x2 ∈ R
d .

Assumption 2 f (0) = 0,g(0) = 0, h1(0, y) = 0 for all |y | < c,
and h2(0, y) = 0 for all |y | ≥ c.
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Existence and Uniqueness Theorem (I):

Remark 2 Under Assumptions 1 and 2, Theorem 1 below
ensures that (2) has a unique solution x(t). In particular,
x(t) ≡ 0 for all t ≥ t0 corresponding to the initial data x(t0) = 0,
which is often called the trivial solution.
Theorem 1 Under Assumptions 1 and 2, there exists a unique
solution x(t) to Eq. (2) with the standard initial condition.
Moreover, the solution x(t) is equals to zero for all t ≥ t0
corresponding to the initial data x(t0) = 0, which is often called
the trivial solution.

Proof. By using the well-known Picard iteration, together with
Doob’s martingale inequality, Cauchy-Schwarz inequality,
Gronwall’s inequality, Itô’s isometry and stochastic analysis
theory.
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Conditions:

Assumption 3 f ,g,h1,h2 satisfy the local Lipschitz condition,
i.e., for each m = 1,2, ...,, there exist four positive constants
Kim, i = 1,2,3,4 such that

|f (x1) − f (x2)| ≤ K1m|x1 − x2|, |g(x1) − g(x2)| ≤ K2m|x1 − x2|,

∫

|y |<c
|h1(x1, y) − h1(x2, y)|ν(dy) ≤ K3m|x1 − x2|,

∫

|y |≥c
|h2(x1, y) − h1(x2, y)|ν(dy) ≤ K4m|x1 − x2|,

for all x1, x2 ∈ R
d with |x1| ∨ |x2| ≤ m, where a ∨ b represents

max{a,b}.
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Remark:

Remark 3 Under Assumptions 2 and 3, Eq. (2) has a unique
local solution x(t). To ensure a unique global solution x(t) to
Eq. (2), we need an additional condition. To present the
condition, we need to the following infinitesimal generator A of
x(t) defined by

Af (x) := lim
t↓0

Ex [f (x(t))] − f (x)

t
, x ∈ R

d , (3)

where the set of functions f : R
d −→ R such that the limit exists

at x is denoted by DA(x), while DA denotes the set of functions
for which the limit exists for all x ∈ R

d .
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Notations:

• C2
1(R+ × R

d ; R+) denotes the family of all nonnegative
functions V (t , x) on R+ × R

d which are continuously twice
differentiable in x and differentiable in t .

Vt(t , x(t)) =
∂V (t , x(t))

∂t
, Vxx(t , x(t)) =

(
∂2V (t , x(t))
∂xi∂xj

)

n×n

,

Vx (t , x(t)) =

(
∂V (t , x(t))

∂x1
, ...,

∂V (t , x(t))
∂xn

)
.

• Bh := {x ∈ R
d : |x | < h}

• C2
1(R+ × Bh; R+) can be defined similarly.
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Define an operator GV :

If V ∈ C2
1(R+ × R

d ; R+), then according to [D. Applebaum.
(2009)], we can define an operator GV from R+ × R

d to R by

GV (t , x(t)) = Vt(t , x(t)) + Vx(t , x(t))f (x(t))

+
1
2

trace[gT (x(t))Vxx (t , x(t))g(x(t))]

+

∫

|y |<c
[V (t , x(t) + h1(x(t), y)) − V (t , x(t))

−h1(x(t), y)Vx (t , x(t))]ν(dy)

+

∫

|y |≥c
[V (t , x(t) + h2(x(t), y)) − V (t , x(t))]ν(dy).

(4)

Remark 4 Note that G is the infinitesimal generator of the Feller
semigroup when {x(t), t ≥ t0} is a Feller process.
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Conditions:

Define Uc
R := {x ∈ R

d : |x | > R}

Assumption 4 There exists a nonnegative function V (t , x) on
R+ × Uc

R that is twice continuously differentiable in x ∈ Uc
R for

some R > 0 sufficiently large and differentiable in t , such that
there exists a constant α > 0 satisfying

GV (t , x(t)) ≤ αV (t , x(t)),

inf
x(t)>R

V (t , x(t)) → ∞ as R → ∞.
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Existence and Uniqueness Theorem (II):

Theorem 2 Under Assumptions 2,3 and 4, there exists a unique
global solution x(t) to Eq. (2) with the standard initial condition.

Proof. Under Assumptions 2 and 3, there exists a unique
maximal solution x = {x(t),0 ≤ t < σ}, where σ is the
explosion time. If we can prove σ = ∞, we know that x(t) is
global. To this end, we define the stopping time

σk = inf{0 ≤ t < σ : V (t , x(t)) ≥ k}.

Obviously, σk is increasing on k , and so we have σk → σ∞ as
k → ∞. Furthermore, we have σ∞ ≤ σ. So we only need to
prove σ∞ = ∞.
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Stochastic stability:

Definition 1 The trivial solution of (2) is said to stochastically
stable or stable in probability if for every pair of ε ∈ (0,1) and
ρ > 0, there exists a δ = δ(ε, ρ, t0) such that

P{|x(t)| < ρ for all t ≥ t0} ≥ 1 − ε

whenever |x0| < δ. Otherwise it is said to be stochastically
unstable.

Definition 2 The trivial solution of (2) is said to be almost surely
stable if

lim
t→∞

x(t) = 0 a.s.

for all x0 ∈ R
d .
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Stochastic stability:

Definition 3 The trivial solution of (2) is said to be
asymptotically stable in the pth moment if

lim
t→∞

E|x(t)|p = 0

for all x0 ∈ R
d .

Definition 4 The trivial solution of (2) is said to be pth moment
exponentially stable if there is a pair of constants α > 0 and
β > 0 such that

E|x(t)|p ≤ α|x0|
pexp{−β(t − t0)}

for all t ≥ t0 and x0 ∈ R
d .
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Stochastic stability:

Remark 5 We remark that asymptotically stable in the pth
moment is often called asymptotically stable in the mean
square when p = 2.
Similarly, exponentially stable in the pth moment is often called
exponentially stable in the mean square when p = 2.

Definition 5 The trivial solution of (2) is said to be is said to be
almost surely pth moment exponentially exponentially stable if

lim sup
t→∞

1
t

log|x(t)|p = 0 a.s.

for all x0 ∈ R
d .
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Stochastic stability:

Definition 6 The trivial solution of (2) is said to be continuous in
probability if for any ε > 0 and x0 ∈ R

d ,

lim
δ→0

P{|x(t + δ) − x(t)| ≥ ε) = 0.

Definition 7 The trivial solution of (2) is said to be continuous in
the pth moment if

lim
δ→0

E|x(t + δ) − x(t)|p = 0

for all x0 ∈ R
d . In particular, continuous in the 2th moment is

usually called continuous in the mean square when p = 2.
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Main results

Theorem 3 Under Assumptions 1 and 2, the trivial solution of
(2) is stable in probability if there exists a positive definite
function V ∈ C2

1(R+ × Bh; R+) such that

GV (t , x(t)) ≤ 0 (5)

for all x(t) ∈ Bh.

Proof. Take 0 < c < h
2 and define the stopping time

τ = inf{t ≥ t0 : |x(t)| ≥ c}.

The main tools of the proof are Itô’s formula, stochastic
analysis, probability inequalities techniques.
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Assumption 5

One of the following two conditions holds:
(i) If 0 < p < 2, then for any 0 < q ≤ p, there exist positive
constants K̃i(i = 1,2) such that

∫

|y |<c
|h1(x , y)|qν(dy) ≤ K̃1|x |

q , (6)

∫

|y |≥c
|h2(x , y)|qν(dy) ≤ K̃2|x |

q , (7)

for all x ∈ R
d ;

(ii) If p ≥ 2, then for any 2 ≤ q ≤ p, there exist positive
constants K̃i(i = 1,2) such that (6) and (7) are satisfied for all
x ∈ R

d .
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Remark:

Remark 6 Assumption 5 is slightly weaker than the following
condition:

(H) For any 0 < q ≤ p, there exist positive constants
K̃i(i = 1,2) such that (6) and (7) are true for all x ∈ R

d .

Actually, when q = 0.5,p = 3, (6) and (7) are required to hold in
(H), but (6) and (7) are allowed to fail in Assumption 5.
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Notations

• K△ denotes the family of all continuous increasing convex
functions κ : R+ → R+ such that κ(0) = 0 while κ(u) > 0 for
u > 0;

• L1(R+; R+) is the family of functions γ : R+ → R+ such that∫∞
0 γ(t)dt <∞;

• Ψ(R+; R+) is the family of continuous functions ψ : R+ → R+

such that for any δ > 0 and any increasing sequence
{tk}k≥1,

∑∞
k=1

∫ tk +δ

tk
ψ(t)dt = ∞.
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Main results

Theorem 4 Under Assumptions 1, 2 and 5, the trivial solution
of (2) is asymptotically stable in the pth moment if there exist
functions V ∈ C2

1(R+ × R
d ; R+), γ ∈ L1(R+; R+), κ1, κ2 ∈

K△,ψ ∈ Ψ(R+; R+) and a positive constant p > 0 such that

V (t , x(t)) ≥ κ1(|x(t)|p), (8)

GV (t , x(t)) ≤ γ(t) − ψ(t)κ2(|x(t)|p) (9)

for all x(t) ∈ R
d .
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Main results

Theorem 5 Under Assumptions 1, 2 and 5, the trivial solution
of (2) is asymptotically stable in the pth moment if there exist
two functions V ∈ C2

1(R+ × R
d ; R+), γ ∈ L1(R+; R+) and two

positive constants p > 0, α > 0 such that

GV (t , x(t)) ≤ γ(t) − α|x(t)|p (10)

for all x(t) ∈ R
d .
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Proof of Theorem 5

Proof. By Itô’s formula, we have that for any t > s,

|x(t)|p = |x(s)|p +

∫ t

s
p|x(u−)|p−2xT (u−)g(x(u−))dB(u)

+

∫ t

s
p|x(u−)|p−2xT (u−)f (x(u−))du

+
1
2

p(p − 2)

∫ t

s
|x(u−)|p−4|xT (u−)g(x(u−))|2du

+
p
2

∫ t

s
|x(u−)|p−2|g(x(u−))|2du
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Proof of Theorem 5

+

∫ t

s

∫

|y |<c
[|x(u−) + H(x(u−), y)|p − |x(u−)|p]Ñ(du,dy)

+

∫ t

s

∫

|y |≥c
[|x(u−) + I(x(u−), y)|p − |x(u−)|p]N(du,dy)

+

∫ t

s

∫

|y |<c
[|x(u−) + H(x(u−), y)|p − |x(u−)|p

−p|x(u−)|p−2xT (u−)H(x(u−), y)]ν(dy)du. (11)
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Proof of Theorem 5

≤ |x(s)|p + [K1p +
1
2

p(p − 2)K1 +
p
2

K 2
1 ]

∫ t

s
|x(u−)|pdu

+

∫ t

s
p|x(u−)|p−2xT (u−)g(x(u−))dB(u)

+

∫ t

s

∫

|y |<c
[|x(u−) + H(x(u−), y)|p − |x(u−)|p]Ñ(du,dy)

+

∫ t

s

∫

|y |<c
[|x(u−) + H(x(u−), y)|p − |x(u−)|p

−p|x(u−)|p−2xT (u−)H(x(u−), y)]ν(dy)du +
∫ t

s

∫

|y |≥c
[|x(u−) + I(x(u−), y)|p − |x(u−)|p]N(du,dy).(12)
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Proof of Theorem 5

Thus, for any δ ≥ 0, we get

E

(
sup

s≤t≤s+δ

|x(v)|p

)

≤ E|x(s)|p + [K1p +
1
2

p(p − 2)K1 +
p
2

K 2
1 ]

∫ s+δ

s
E|x(u−)|pdu

+E

[
sup

s≤t≤s+δ

∫ t

s
p|x(u−)|p−2xT (u−)g(x(u−))dB(u)

]
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Proof of Theorem 5

+E{ sup
s≤t≤s+δ

[

∫ t

s

∫

|y |<c
(|x(u−) + H(x(u−), y)|p

−|x(u−)|p)Ñ(du,dy) +

∫ t

s

∫

|y |<c
(|x(u−) + H(x(u−), y)|p

−|x(u−)|p − p|x(u−)|p−2xT (u−)H(x(u−), y))ν(dy)du]}

+E{ sup
s≤t≤s+δ

[

∫ t

s

∫

|y |≥c
(|x(u−) + I(x(u−), y)|p

−|x(u−)|p)Ñ(du,dy) +

∫ t

s

∫

|y |≥c
(|x(u−) + I(x(u−), y)|p

−|x(u−)|p)ν(dy)du]}. (13)
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Proof of Theorem 5

By the Burkholder-Davis-Gundy inequality (for instance, see
Mao (1997,2008) pp. 129), we have

E

[
sup

s≤t≤s+δ

∫ t

s
p|x(u−)|p−2xT (u−)g(x(u−))dB(u)

]

≤
1
2

E

[
sup

s≤t≤s+δ

|x(v−)|p

]
+ 16p2K1

∫ s+δ

s
E|x(u−)|pdu.
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Proof of Theorem 5

On the other hand, from the Kunita’s estimate (see Applebaum
(2004, 2009), Kunita(1984)) and Hölder inequality we see that
there exist two positive constants c1(p) and c2(p) such that

E{ sup
s≤t≤s+δ

[

∫ t

s

∫

|y |<c
(|x(u−) + H(x(u−), y)|p − |x(u−)|p)Ñ(du,dy)

+

∫ v

t

∫

|y |<c
(|x(u−) + H(x(u−), y)|p − |x(u−)|p

−p|x(u−)|p−2xT (u−)H(x(u−), y))ν(dy)du]}

≤ c1(p)E



(∫ s+δ

s

∫

|y |<c
|H(x(u−), y)|2ν(dy)du

) p
2




+c2(p)E

[(∫ s+δ

s

∫

|y |<c
|H(x(u−), y)|pν(dy)du

)]
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Proof of Theorem 5

≤ c1(p)δ
p
2−1E



∫ s+δ

s

(∫

|y |<c
|H(x(u−), y)|2ν(dy)

) p
2

du




+c2(p)E

[(∫ s+δ

s

∫

|y |<c
|H(x(u−), y)|pν(dy)du

)]

≤

[
c1(p)δ

p
2−1K

p
2

2 + c2(p)K2

] ∫ s+δ

s
E|x(u−)|pdu.
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Proof of Theorem 5

Similarly, we obtain

E{ sup
s≤t≤s+δ

[

∫ t

s

∫

|y |≥c
(|x(u−) + I(x(u−), y)|p − |x(u−)|p)Ñ(du,dy)

+

∫ t

s

∫

|y |≥c
(|x(u−) + I(x(u−), y)|p − |x(u−)|p

−p|x(u−)|p−2xT (u−)H(x(u−), y))ν(dy)du]}

≤ c1(p)E



(∫ s+δ

s

∫

|y |<c
|H(x(u−), y)|2ν(dy)du

) p
2




+c2(p)E

[(∫ s+δ

s

∫

|y |<c
|H(x(u−), y)|pν(dy)du

)]
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≤ c1(p)δ
p
2−1E



∫ s+δ

s

(∫

|y |<c
|H(x(u−), y)|2ν(dy)

) p
2

du




+c2(p)E

[(∫ s+δ

s

∫

|y |<c
|H(x(u−), y)|pν(dy)du

)]

≤

[
c1(p)δ

p
2−1K

p
2

2 + c2(p)K2

] ∫ s+δ

s
E|x(u−)|pdu. (14)
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Thus,

E

(
sup

s≤v≤s+δ

|x(v)|p

)

≤ E|x(s)|p + [K1p +
1
2

p(p − 2)K1 +
p
2

K 2
1 ]

∫ s+δ

s
E|x(u−)|pdu

+
1
2

E

[
sup

s≤v≤s+δ

|x(v−)|p

]
+ 16p2K1

∫ s+δ

s
E|x(u−)|pdu

+

[
c1(p)δ

p
2−1K

p
2

2 + c2(p)K2

] ∫ s+δ

s
E|x(u−)|pdu,
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E

(
sup

s≤v≤s+δ

|x(v)|p

)

≤ 2E|x(t)|p + [2K1p + p(p − 2)K1 + pK 2
1 + 32p2K1

+2c1(p)δ
p
2−1K

p
2

2 + 2c2(p)K2]δE

(
sup

t≤v≤t+δ

|x(v)|p

)
. (15)

Now choose the constant δ enough small such that

[2K1p+p(p−2)K1+pK 2
1 +32p2K1+2c1(p)δ

p
2−1K

p
2

2 +2c2(p)K2]δ < 1.
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Then, it follows from (15) that

E

(
sup

t≤v≤t+δ

|x(v)|p

)
≤

2
1 − C(p, δ,K1,K2)

E|x(t)|p, (16)

where C(p, δ,K1,K2) =

[2K1p+p(p−2)K1+pK 2
1 +32p2K1+2c1(p)δ

p
2−1K p

2 +2c2(p)K p
2 ]δ.

Hence,
∞∑

m=1

∫ mδ

2

(m−1)δ
2

E

(
sup

t≤v≤t+δ

|x(v)|p

)
dt

≤
2

1 − C(p, δ,K1,K2)

∞∑

m=1

∫ mδ

2

(m−1)δ
2

E|x(t)|pdt

=
2

1 − C(p, δ,K1,K2)

∫ ∞

0
E|x(t)|pdt <∞, (17)
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which yields

lim
m→∞

∫ mδ

2

(m−1)δ
2

E

(
sup

t≤v≤t+δ

|x(v)|p

)
dt = 0. (18)

Observe that

E


 sup

mδ

2 ≤v≤ (m+1)δ
2

|x(v)|p


 ≤ E

(
sup

t≤v≤t+δ

|x(v)|p

)
∀t ∈

[
(m − 1)δ

2
,

mδ
2

]
.
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Then, by (18) we get

0 ≤
δ

2
lim

m→∞
E


 sup

mδ

2 ≤v≤ (m+1)δ
2

|x(v)|p




= lim
m→∞

∫ mδ

2

(m−1)δ
2

E


 sup

mδ

2 ≤v≤ (m+1)δ
2

|x(v)|p


dt

≤ lim
m→∞

∫ mδ

2

(m−1)δ
2

E

(
sup

t≤v≤t+δ

|x(v)|p

)
dt = 0,
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which implies

lim
m→∞

E


 sup

mδ

2 ≤v≤ (m+1)δ
2

|x(v)|p


 = 0. (19)

Obviously, from (19) it follows that

lim
v→∞

E|x(v)|p = 0.

Therefore, the trivial solution of (2) is asymptotically stable in
the pth moment.
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Main results

Theorem 6 Suppose that the conditions of Theorem 5 hold.
Then the trivial solution of (2) is almost surely asymptotically
stable.
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Main results

We now investigate the continuity of the trivial solution for
system (2).

Theorem 7 Under Assumptions 1, 2 and 5, the trivial solution
of (2) is continuous in the pth moment if E|x(t)|p is bounded for
any t > 0, i.e. there exists a positive constant K such that
E|x(t)|p ≤ K <∞.
Proof.

E|x(t + δ) − x(t)|p = E|
∫ t+δ

t
f (x(u))du +

∫ t+δ

t
g(x(u))dB(u)

+

∫ t+δ

t

∫

|y |<c
h1(x(u−), y)Ñ(du,dy)

+

∫

|y |≥c
h2(x(t−), y)N(dt ,dy)|p
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≤ 4p−1E|
∫ t+δ

t
f (x(u−))du|p + 4p−1E|

∫ t+δ

t
g(x(u−))dB(u)|p

+4p−1E|
∫ t+δ

t

∫

|y |<c
h1(x(u−), y)Ñ(du,dy)|p

+4p−1E|
∫ t+δ

t

∫

|y |≥c
h2(x(u−), y)N(du,dy)|p
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