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Background of Lévy process

Background of L évy process

e The basic theory was established in the 1930s by Paul Lévy,
but a great deal of new theoretical development as well as
novel applications have appeared in recent years.

e They form special subclasses of both semimartingales and
Markov processes.

e They are the simplest examples of random motions whose
sample paths are right-continuous and have a number (at most
countable) of random jump discontinuities occurring at random
times on each finite time interval.



Background of Lévy process

Background of L évy process

o Mathematical finance, the fluctuations in the financial
markests, quantum field theory, filtering, economics, control,
physics, mechanics, engineering;

e Earthquakes, hurricanes, epidemics;

e Important examples: Brownian motion and Gaussian
processes, Poisson processes, Compound Poisson processes,
Interlacing processes, a-stable Lévy process, Subordinators.



The definition and its properties of Lévy process

The definition of L évy process

Definition 1 (Lévy process)

Let L(t) be a stochastic process defined on a complete
probability space (22, F,P), then L(t) is a Lévy process if the
following conditions hold:

(@ LO)=0 (as.);

(b) L(t) has independent and stationary increments;

(c) L(t) is stochastically continuous,

i.e. forallk >0andt,s > 0,

lim P(L(t) — L(s)| > k) = 0;



The definition and its properties of Lévy process

Remark 1 In the presence of (a) and (b), (c) is equivalent to the
following condition: for all k > O,

im P(IL(t)] > k) = 0.

Remark 2 L(t) has cadlag paths (i.e., the paths are right
continuous with left limits.).



The definition and its properties of Lévy process

Some examples of L évy processes

1. Brownian motion: A standard Brownian motion

B = (B(t),t > 0) is a Lévy process on RY such that

e B(t) ~ N(0,tl) foreacht > 0,

¢ B has continuous sample paths.

The characteristic function of a standard Brownian motion is
given by

1
bay () = exp { ~5tu |

foreachu € R9,t > 0.



The definition and its properties of Lévy process

Some examples of L évy processes

2. Poisson process: LetN = (N(t),t > 0) be a Poisson
process with intensity A\ > 0. It is a Lévy process with
non-negative integer values. For each t > 0, N(t) follows a
Poisson distribution with parameter At so that

(At)"e A

P(N(t) = n) = =

foreachn=0,1,2,...



The definition and its properties of Lévy process

A Poisson process has piecewise constant paths on each finite
time interval and at the random times

T =inf{t > 0:N(t)=n},

and it has jumps of size 1.
Its characteristic function is given by

PNy (U) = exp P\t(eiu - 1)} :

foreachu e R9,t > 0.



The definition and its properties of Lévy process

Some examples of L évy processes

3. Compound Poisson process:

Let N = (N(t),t > 0) be a Poisson process with intensity A > 0
and let (U(m), m € N) be a sequence of independent,
identically distributed random variables on RY, independent of
N and defined on the probability space (€2, F, P) with common
law .

The compound Poisson process Z = (Z(t),t > 0) is a Lévy
process, where for eacht > 0,



The definition and its properties of Lévy process

Some examples of L évy processes

The characteristic function of a compound Poisson process is
given by

sz = {t| [ @9~ a0 |

for each u € RY,t > 0 and we can deduce that the Lévy
measure for Z is \,u.



The definition and its properties of Lévy process

Lévy-Khintchine formula

If L(t) is a Lévy process, then forallt > 0and u € RY,

E(e/L1)) — gtn(),

where

n(u) =i(b,u) — %(U,Au) + /Rd_{o}[ei(u,y)

-1- i(UaY)|(0<\y\<l)(y)]’/(dy)7

and A is a positive definite symmetric d x d matrix.

The law of L(t) is uniquely determined by its characteristics
(b,A,v).



The definition and its properties of Lévy process

Lévy Ito decomposition Theorem

If L(t) is a Lévy process, then there exist a constant b € RY, a
Brownian motion B, with covariance matrix A and independent
Poisson random measure N defined on R, x (RY — {0}) with
compensator N, such that for every t > 0,

yN(t. dy) +/ YN(t. dy),

ly|>c

L(t) = bt + Ba(t) +/

ly|<c

wtlere
e N(t,dy) = N(t,dy) — tr(dy),



The definition and its properties of Lévy process

e N is independent of B and is a Poisson random measure
defined on R, x (RY — {0}) with compensator N and intensity
measure v.

e v is a Lévy measure defined on RY — {0}, which satisfies

/ (v? A L)(dy) < oo,
Rd—{0}

e the parameter ¢ € [0, c0) is a constant.

eUsually, the pair (B, N) is called a Lévy noise.



The definition and its properties of Lévy process

Lévy martingale

e The process L(t) is a martingale, and will be called a Lévy
martingale, if and only if

/ IX|r(dx) < oo and b= / xv(dx).

(Ix[>1) (Ix]>1)

In this case, the process L(t) can be written as follows:
L) =BA®+ [ yN(t.dy)

RY—{0}

o If L(t) = Lm(t) + bt, where Ly is a Lévy martingale, we call
L(t) a Lévy martingale with drift.



Stochastic system of Lévy processes

Stochastic system of L  évy processes:

Consider the following stochastic differential equation driven by
Lévy processes:

dx(t) = f(x(t))dt +g(x(t))dL(t), t > to > O, @)

with the initial value x(tp) = xo € RY, where f and g are two
functions, and L(t) is a Lévy process.



Stochastic system of Lévy processes

Stochastic system of L  évy processes:

By using the Lévy Ité decomposition Theorem, we establish the
following model:

dx(t) = f(x(t))dt + g(x(t))dB(t) +/ hy (x(t—),y)N(dt, dy)

ly|<c

+/ ho(x(t—),y)N(dt,dy), t >ty > 0, 2
ly|=c

with the initial value x(tp) = xo € RY, where the mappings
f:RY - RI g:RI - My m(R),hi(i =1,2): R x RY — RY,
and the constant ¢ € (0, oo] is the maximum allowable jump
size.

Here, My m denotes the space of all real-valued d x m matrices

. 1
with the norm [|A[| := (329, Sy lagag))z, A = (aj)axm.



Conditions

Conditions:

Assumption 1 f, g, hq, h, satisfy the global Lipschitz condition,
i.e., there exist four positive constants Kj(i = 1,2, 3,4) such that

f(x1) = f(x2)] < Kalxy —x2|, |9(X1) —g(X2)| < Kalx1 — X2/,

/ Ih1(x1,y) —hi(x2,y)lv(dy) < Kzlxg — X2,
y|<C

/> Iha(X1,Y) — ha(x2,y)|v(dy) < Kglxz — X2,
y|=C

for all x;,x, € RY.

Assumption 2 f(0) =0,9(0) =0, hy(0,y) =0forall |y| < c,
and h,(0,y) =0 for all |y| > c.



Conditions

Existence and Uniqueness Theorem (I):

Remark 2 Under Assumptions 1 and 2, Theorem 1 below
ensures that (2) has a unique solution x(t). In particular,

x(t) = 0for allt > ty corresponding to the initial data x(tg) = 0,
which is often called the trivial solution.

Theorem 1 Under Assumptions 1 and 2, there exists a unique
solution x(t) to Eq. (2) with the standard initial condition.
Moreover, the solution x(t) is equals to zero for all t > tg
corresponding to the initial data x(ty) = 0, which is often called
the trivial solution.

Proof. By using the well-known Picard iteration, together with
Doob’s martingale inequality, Cauchy-Schwarz inequality,
Gronwall’s inequality, I1t6’s isometry and stochastic analysis
theory.



Conditions

Conditions:

Assumption 3 f, g, hq, h, satisfy the local Lipschitz condition,
i.e.,, foreachm = 1,2, ..., there exist four positive constants
Kim,i = 1,2, 3,4 such that

If(x1) — f(%2)| < Kim|Xz — X2|, [9(X1) — g(X2)| < Kom|X1 — X2/,
/H Ih1(x0.y) — hy(ka, Y)l(dy) < Kamlxa — %el,
y|<C

/||> Ih2(X1,Y) — hi(x2,y)|v(dy) < Kam[X1 — X2l
y|=C

for all x1, %, € RY with |x1| V [x2| < m, where a v b represents
max{a,b}.



Conditions

Remark 3 Under Assumptions 2 and 3, Eq. (2) has a unique
local solution x(t). To ensure a unique global solution x(t) to
Eqg. (2), we need an additional condition. To present the
condition, we need to the following infinitesimal generator A of
x(t) defined by

Af(x) := lim Ex[f(x(ti)] —T) g ere 3)

where the set of functions f : RY — R such that the limit exists
at x is denoted by Da(x), while Dp denotes the set of functions
for which the limit exists for all x € RY.



Conditions

Notations:

e C2(R; x RY; R, ) denotes the family of all nonnegative
functions V (t,x) on R, x RY which are continuously twice
differentiable in x and differentiable in t.

2
Vt(t,X(t)) - W’ Vxx(t,X(t)) - <%,axxj(t))> ’
Vi(t, x(t)) = <3V(;;(>i(t))m 6V(;;(>n<(t))> |

e B :={x cRY: x| <h}
e C2(Ry x By;R;) can be defined similarly.



Conditions

Define an operator GV:

IfV e Cf(]R+ x RY; R,), then according to [D. Applebaum.
(2009)], we can define an operator GV from R, x RY to R by

GV (£, x(1)) = Ve(t,x(1)) + Vi (t. X (D) (X 1)
+Strace[g” (x(1)Vau (. X () (X(1))]
+/|y|<c[va,x(t)+h1(x(t>,y)> VLX)
~hy(x(8), )V (6 X (1) (cly)
" /|y VX +hax().9) =V EXOA).
@)

Remark 4 Note that G is the infinitesimal generator of the Feller
semigroup when {x(t),t > to} is a Feller process.



Conditions

Conditions:

Define U := {x € RY : x| > R}

Assumption 4 There exists a honnegative function V (t,x) on
R x Ug that is twice continuously differentiable in x € Ug for
some R > 0 sufficiently large and differentiable in t, such that

there exists a constant o > 0 satisfying

GV (t,x(t)) < aV(t,x(t1)),

inf 'V R .
X(:?>R (t,x(t)) =00 a3 R —



Conditions

Existence and Uniqueness Theorem (ll):

Theorem 2 Under Assumptions 2,3 and 4, there exists a unique
global solution x(t) to Eq. (2) with the standard initial condition.

Proof. Under Assumptions 2 and 3, there exists a unique
maximal solution x = {x(t),0 <t < o}, where ¢ is the
explosion time. If we can prove o = oo, we know that x(t) is
global. To this end, we define the stopping time

ok =inf{l0 <t <o:V(t,x(t) >k}

Obviously, oy is increasing on k, and so we have oy — 04 as
k — oo. Furthermore, we have o, < 0. So we only need to
prove oo, = oo.



Conditions

Stochastic stability:

Definition 1 The trivial solution of (2) is said to stochastically
stable or stable in probability if for every pair of ¢ € (0, 1) and
p > 0, there exists a § = J(e, p, tp) such that

P{x(t) <p foradlt>t}>1—¢

whenever |xp| < 0. Otherwise it is said to be stochastically
unstable.

Definition 2 The trivial solution of (2) is said to be almost surely
stable if

lim x(t) =0 a.s.

t—oo

for all xg € RY.



Stochastic stability:

Definition 3 The trivial solution of (2) is said to be
asymptotically stable in the pth moment if

tIim E[x(t)P =0

for all xg € RY.

Definition 4 The trivial solution of (2) is said to be pth moment
exponentially stable if there is a pair of constants o« > 0 and
6 > 0 such that

E[x(t)[P < alxo[Pexp{—05(t —t0)}

forall t >ty and xp € RY.



Stochastic stability:

Remark 5 We remark that asymptotically stable in the pth
moment is often called asymptotically stable in the mean
square when p = 2.

Similarly, exponentially stable in the pth moment is often called
exponentially stable in the mean square when p = 2.

Definition 5 The trivial solution of (2) is said to be is said to be
almost surely pth moment exponentially exponentially stable if

lim sup EIog|x(t)|IO =0 as.

t—oo t

for all xg € RY.



Stochastic stability:

Definition 6 The trivial solution of (2) is said to be continuous in
probability if for any ¢ > 0 and xg € RY,

(!L”B P{|x(t +0) —x(t)] > ¢) =0.

Definition 7 The trivial solution of (2) is said to be continuous in
the pth moment if

gimo E|x(t+0) —x(t)|P =0

for all xg € RY. In particular, continuous in the 2th moment is
usually called continuous in the mean square when p = 2.



Main results

Theorem 3 Under Assumptions 1 and 2, the trivial solution of
(2) is stable in probability if there exists a positive definite
function V € C2(R; x Bp; R.) such that

GV (t,x(t)) <0 (5)
for all x(t) € Bp.
Proof. Take 0 < ¢ < % and define the stopping time
T =inf{t >ty : [x(t)| > c}.

The main tools of the proof are 1t0’s formula, stochastic
analysis, probability inequalities techniques.



Assumption 5

One of the following two conditions holds:
() 1f0 < p < 2, thenforany 0 < g < p, there exist positive
constants K;(i = 1, 2) such that

[ Imxy)ay) < Raix, ©
lyl<c
/ ey < Ro ™
y|>c

for all x € RY;

(i) If p > 2, then for any 2 < g < p, there exist positive
constants K;(i = 1, 2) such that (6) and (7) are satisfied for all
x € RY,



Remark 6 Assumption 5 is slightly weaker than the following
condition:

(H) Forany 0 < g < p, there exist positive constants
Ki (i = 1,2) such that (6) and (7) are true for all x € RY.

Actually, when g = 0.5,p = 3, (6) and (7) are required to hold in
(H), but (6) and (7) are allowed to fail in Assumption 5.



Notations

e K denotes the family of all continuous increasing convex
functions x : Ry — Ry such that x(0) = 0 while x(u) > 0 for
u>0;

e L}(R,;R,) is the family of functions ~ : R, — R such that
Jo~ A(t)dt < oo;

e V(R ;R ) is the family of continuous functions ¢ : Ry — R,
such that for any § > 0 and any increasing sequence

{t t>1, D keg ftk” P(t)dt =



Main results

Theorem 4 Under Assumptions 1, 2 and 5, the trivial solution
of (2) is asymptotically stable in the pth moment if there exist
functions V € C2(Ry x RY; Ry ),y € LY (R} ;R), k1, Kz €
Ka,b € W(R4; Ry) and a positive constant p > 0 such that

V(t,x(t)) = ra(x(1)P), (8)

GV (t,x (1)) < y(t) — ¢(t)s2(Ix (1)) (9)

for all x(t) € RY.



Main results

Theorem 5 Under Assumptions 1, 2 and 5, the trivial solution
of (2) is asymptotically stable in the pth moment if there exist
two functions V € C2(R; x R%;R;), vy € LY(R4;Ry) and two
positive constants p > 0, « > 0 such that

GV (t,x(t)) < (1) — alx (1) (10)

for all x(t) € RY.



Proof of Theorem 5

Proof. By Ito’s formula, we have that for any t > s,

XOP = k()P + | pIx(u-)P X (u-)g (x(u—)dB(v)
/p|x )IP2xT (U (x(u-))du
300~ 2) [ k()P (gl (u-) el
IC’/|x )Pl (x(u—))du



Proof of Theorem 5

+/st /y<c[|x(u) +Hx(u=),y)lP — x(u=)[PIN(du,dy)
+/t/y|>c[!x U—) + 1(x(u=),y)|P — x(u—)[P]N(du, dy)

o/ D)+ Xy = P

—pIx(u=)P2xT (u=)H(x(u=),y)lv(dy)du. (11)



Proof of Theorem 5

< X(S)P + [Kap + = p(p 2)Ky + P Kl]/|x )Pdu

t

+ [ plx(u=)P72xT (u—)g(x(u-))dB(u)

S

t ~
+/ /y<c[|X( )+H( ( )’y)|p _ |X(U*)Ip]N(du,dy)

e[ ]I+ K y)P - ixtu)p

—pIx(u—)[P2xT (U= )H(x (u—). y)Jv(dy)du +
// [X(u—) + 1(x(u-),y)PP — [x(u—)PIN(du, dy)(12)
s Jly|>c



Proof of Theorem 5

Thus, for any § > 0, we get

E( sup \X(V)!p>
s<t<s+d

1 p Ss+0
<EX(s)P+ [Kap+ 5P(p — 21 + 5KZ [ Elx(u-)Pdu
S

sup / plx(u—)P~2xT (u-)g (x(u—))dB(u)]

s<t<s+é



Proof of Theorem 5

t
— — p
*E{sj‘ﬂ?ﬁ[ / [0+ HOcwo )

~x(u-)[P)N (du, dy) + / /y RCIC u-),y)P

—[x(u=)P - D\X( —)P2xT (uU=)H(x(u=),y))v(dy)du]}

t

~x(u—) )i (du, oly)+//|| (X(u—) + 1(x(u—).y)?
S y|>c

~x(u—)P)v(dy)du]}. (13)



Proof of Theorem 5

By the Burkholder-Davis-Gundy inequality (for instance, see
Mao (1997,2008) pp. 129), we have

[ sup /p\x P27 (u-)g(x(u —))dB(u)]

s<t<s+d

1 ) s+d
< EE sup |x(v—=)P| + 16p°Ky Elx(u—)[Pdu.
S

s<t<s+d




Proof of Theorem 5

On the other hand, from the Kunita’s estimate (see Applebaum
(2004, 2009), Kunita(1984)) and Holder inequality we see that
there exist two positive constants c;1(p) and c,(p) such that

e s 1] (@) Hx(w ) y)P = p(u) PR, ay

s<t<s+é

//M X(u=) + HX(U=),y)P — x(u-)P
~plx (U)X (U H((u- ) y)(dy)dul}

s+4 2
< ci(p)E {( [ [ Mooy (dy)du)
a(p [( / . / s S)y)lPy (dy)du)




Proof of Theorem 5

S+0 %
< cy(p)stIE { / : ( /y<C|H(x(u>,y)|2u(dy)) du]
S+4
+C2(p [(/ /y|<c Py (dy)du )]

S+0
< [cl(maz K;+c2(p)Kz] / Elx(u—)Pdu.



Proof of Theorem 5

Similarly, we obtain

E{ sup / /y>c X(U=) + 1(x (u=), y)IP — [x(u=)P)N (cu, dy)

s<t<s+é

//M X(u=) + 1(x(u=), y)P — x(u—)P

—pIx(u=)P~2xT (u=)H(x(u=),y))v(dy)du]}

P

<cr p)E{( /S” [ ROy dy)du>2
e[




Proof of Theorem 5

S+0 %
< cy(p)5s1E { / : ( /y<C|H(x(u>,y)|2u(dy)) du]
S+4
ea(p)E [( / ’ /|y |<C|H(x(u),y>|*’u(oly>olu>]

p p S+4
S[Cl(P)fSZlez*Cz(p)Kz] | Exwopa @9



Proof of Theorem 5

Thus,
E( sup |X(V)|'°>
s<v<s+d
1 P o s+d
<EX(s)P + [Kap + 5P(p — 2)Ks + 5KF] [ Elx(u-)Pdu
S
1 S+4
+=E| sup [|x(v-)P +16p2K1/ E|x(u—)[Pdu
2 s<v<s+d s

o P S+0
i [cl(p)af—lK; +cz(p>K2} | Ex-ypa,
S



Proof of Theorem 5

E ( sup |x(v)|p>
s<v<s+d
< 2EX(1)|P 4 [2K1p + p(p — 2)K1 + pK2Z + 32p3K;

+2c1(p)5%—1K§+2c2(p)K2]5E( sup ]x(v)\p>.(15)

t<v<t+d

Now choose the constant § enough small such that

P
[2K1p+p(p—2)K1+pKZ+32p2Ky+2¢1 (p)52 1K 2 42C5(p)K2]s < 1.



Proof of Theorem 5

Then, it follows from (15) that

2

Bl up, X(IF = EX(®)P, (16
<t§v§'€’+5‘ ) >_1_C(p75’KLK2) XOP,  (19)

where C(p, d,K1,Kz) =
[2Kyp+p(p—2)Ky +PKZ+32p?Ky +2¢1(p)52 1KS +2c,(p)K 0.

Hence,
[eS) mé
2
E / E| sup [x(v)P |dt
— S\ t<v<t4s

00 md
2 2
< E|x(t)|Pdt
N 17C(p,6’KlaK2) 2/(”1_21)6 |X( )|

2 /OO
- E|x(t)Pdt < oo, 17
17C(p,6’KlaK2) 0 ’ ()’ ( )




Proof of Theorem 5

which yields

mé
2
' p _
mleoo ﬁm_zl)é E < sup |x(v)| ) dt = 0. (18)

t<v<t+6

Observe that

E( sup  xw)P| <E[ sup [x(v)P Vte[u,m_ﬂ
ms <y < (M3 t<v<t+s 2 2



Proof of Theorem 5

Then, by (18) we get

j— 1 z p

md
2
< Iim/ E sup |X(V)|p dt =0,
m—oo J(m-1)§ t<v<t+é

2



Proof of Theorem 5

which implies

lim E sup  [x(v)|P | =0. (19)

m—00 mTé <v< (mzl)é
Obviously, from (19) it follows that
lim E|x(v)|° = 0.
V—00

Therefore, the trivial solution of (2) is asymptotically stable in
the pth moment.



Main results

Theorem 6 Suppose that the conditions of Theorem 5 hold.
Then the trivial solution of (2) is almost surely asymptotically
stable.



Main results

We now investigate the continuity of the trivial solution for
system (2).

Theorem 7 Under Assumptions 1, 2 and 5, the trivial solution
of (2) is continuous in the pth moment if E|x(t)|P is bounded for
anyt > 0, i.e. there exists a positive constant K such that
Elx(t)]P <K < 0.

Proof.

t+5 t+6
Efx(t + ) — x(t) p—Ey/ u))du+/ g(x(u))dB(u)

e [Pty o)

+/|y|zc ha(x(t—),y)N(dt,dy)[?



Proof of Theorem 7

t+5 t+6
< 4P~ lE]/ —))du|P + 4P~ 1E]/ u—))dB(u)[P
t+6 y
el / n(x(u-).y)Ri(du. dy)/®
ly|<c

t+0
4P lE\/ /|>C ~),y)N(du, dy)|?
y
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